sec⁴A(1-sin⁴A)-2tan²A=1 ,Prove it
Answers
Answered by
4
sec^4A (1-sin^2A)(1+sin^2A) - 2tan^2A = 1
sec^2A (1+sin^2A) - 2tan^2A = 1
sec^2A (2sin^2A + cos^2A) - 2tan^2A=1
2tan^2A + 1 - 2tan^2A= 1
1=1
sec^2A (1+sin^2A) - 2tan^2A = 1
sec^2A (2sin^2A + cos^2A) - 2tan^2A=1
2tan^2A + 1 - 2tan^2A= 1
1=1
Answered by
14
Answer:
Sec⁴A(1-sin⁴A)-2tan²A=1
Step-by-step explanation:
Sec⁴A(1-sin⁴A)-2tan²A=1
LHS = Sec⁴A(1-sin⁴A)-2tan²A
= (Sec²A)²(1-sin⁴A)-2tan²A
SecA = 1/CosA
= (1-sin⁴A)/(Cos²A)² - 2tan²A
a² - b² = (a +b) (a -b)
= (1 + sin²A)(1-Sin²A)/(Cos²A)² - 2tan²A
1-Sin²A = Cos²A
= (1 + sin²A)Cos²A/(Cos²A)² - 2tan²A
using tanA = SinA/CosA
= (1 + sin²A)/Cos²A - 2Sin²A/Cos²A
=(1/Cos²A) ( 1 + sin²A - 2 Sin²A)
= (1/Cos²A)( 1 - sin²A)
= ( 1 - sin²A)/Cos²A
= Cos²A/Cos²A
= 1
= RHS
QED
Proved
Similar questions