Math, asked by SharmishthaJadhav, 1 month ago

sec75° + cosec75° =
but i want answer in root form ​

Answers

Answered by MoonB0Y
0

Answer:

 \huge \mathfrak \pink{answer}

sec(75) \:  = 3.863 \\ cosec(75) = 1.035 \\ sec(75) + cosec(75) = 4.898

Answered by MysticSohamS
2

Answer:

hey here is your solution

pls mark it as brainliest

Step-by-step explanation:

to \: find =  \\ sec \: 75 + coseec \: 75 \\  \\ so \: we \: know \: that \\ cosec(90 - x) = sec \: x \\  \\ thus \: then \\  = sec \: 75 + cosec \: (90 - 75) \\  \\  = sec \: 75 + sec \: 15 \\  \\  =  \frac{1}{cos \: 75}  +  \frac{1}{cos \:1 5}  \\  \\   =  \frac{1}{cos \: (45 + 30)}  +  \frac{1}{cos \: (45 - 30)}  \\  \\ we \: know \: that \\  \\ cos(x + y) = cos \: x.cos \: y - sin \: x.sin \: y \\  \\ cos \: (x - y) = cos \: x.cos \: y + sin \: x.sin \: y

thus \: then \: accordingly \\  \\  =  \frac{1}{(cos \: 45.cos \: 30)   -  (sin \: 45.sin \: 30)}   +   \frac{1}{(cos \: 45.cos \: 30 )+ sin \: 30.sin \: 45}  \\  \\  =  \frac{1}{ (\frac{1}{ \sqrt{2} }  \times   \frac{ \sqrt{3} }{2}  \: )   - ( \frac{1}{ \sqrt{2} }  \times  \frac{1}{2}  )}  \:  +  \frac{1}{ (\frac{1}{ \sqrt{2} } \times  \frac{ \sqrt{ 3} }{2}   \: ) + ( \frac{1}{2} \times  \frac{1}{ \sqrt{2} })  }  \\  \\  =  \frac{1}{ \frac{ \sqrt{3} }{2 \sqrt{2} }  -  \frac{1}{2 \sqrt{2} } }  +  \frac{1}{ \frac{ \sqrt{3} }{2 \sqrt{2} }  +  \frac{1}{2 \sqrt{2} } }  \\  \\  =  \frac{ \frac{1}{ \sqrt{3} - 1 }  }{2 \sqrt{2} }  +  \frac{ \frac{1}{ \sqrt{ 3}  +  1 } }{2 \sqrt{2} }

 \frac{2 \sqrt{2} }{ \sqrt{3} - 1 }  +  \frac{2 \sqrt{2} }{ \sqrt{3} + 1 }  \\  \\  =  \frac{2 \sqrt{2}( \sqrt{3}  + 1) + 2 \sqrt{2}  ( \sqrt{3} - 1) }{( \sqrt{3} - 1)( \sqrt{3} + 1)  }  \\  \\  =  \frac{2 \sqrt{6}  + 2 \sqrt{2}  + 2 \sqrt{6}  - 2 \sqrt{2} }{( \sqrt{3}) {}^{2}   - (1) {}^{2} }  \\  \\  =  \frac{4 \sqrt{6} }{(3 - 1)}  \\  \\  =  \frac{4 \sqrt{6} }{2}  \\  \\  = 2 \sqrt{6}

Similar questions