Math, asked by bonanik84, 7 months ago

secA-1/secA+1=1-cosA/1+cos​

Answers

Answered by Seer017
2

secA-1/secA+1=1-cosA/1+cos

LHS

=(1/cosA - 1)/ (1/cosA+1)

=(1-cosA/cosA)/(1+cosA/cosA)

=1-cosA/1+cosA

Step-by-step explanation:

secA= 1/cosA

Attachments:
Answered by Anonymous
5

Given :

  •   \large \red{ \sf{\dfrac{secA-1}{secA+1}}}

To Prove :

  •  \large\orange{\sf{\dfrac{secA-1}{secA+1}} =   \dfrac{1 - cosA}{1 + cosA}}

Solution :

 \large\sf{LHS \:  =  \blue {\dfrac{secA - 1}{secA + 1}}} \\  \\ \\  \implies\large \purple{ \sf{ \dfrac{ \dfrac{1}{cos A} - 1 }{ \dfrac{1}{cos A} + 1 }}} \\  \\  \\ \implies\large\red{\sf{ \dfrac{1 - cosA}{1 + cosA}}} \\  \\ \\ \sf {= \: RHS}

Addition information :

  • tanø = sinø/cosø

  • secø = 1/cosø

  • cotø = 1/tanø = sinø/cosø

  • 1 - tan(ø/2)/1 - tan(ø/2) = ±√1 - sinø/1 + sinø

  • tan ø/2 = ±√1 - cosø/1 + cosø

  • sinø = Cos(90° - ø)

  • cosø= sin(90° - ø)

  • tanø = cot(90° - ø)

  • cotø = tan(90° - ø)

  • secø = cosec(90° - ø)
Similar questions