Math, asked by AdithyaDS3079, 10 months ago

√secA-1/secA+1+√secA-1/secA+1=2cosecA

Answers

Answered by sandy1816
3

Answer:

your answer attached in the photo

Attachments:
Answered by MissSolitary
3

 :  \longrightarrow  \underline{ \underline{\mathfrak{ \: Required  \:  \:  \: Answer :-}}}

------------------------------

   \tt {\red{  :  \implies \sqrt{ \frac{sec \: A - 1}{sec \:A + 1 } }   +  \sqrt{ \frac{sec \: A + 1}{sec \: A - 1} } = 2 \: cosec \:  A}} \\

------------------------------

 \tt{ \:L.H.S =  } \tt{ \green{  \sqrt{ \frac{sec \:A - 1 }{sec \: A + 1} } +  \sqrt{ \frac{sec \: A + 1}{sec \: A - 1} }  }} \\  \\   \sf \: On  \: squaring \:  to  \: remove  \: the  \: roots, \\  \\   :  \longrightarrow \tt{ \green{ \:  \sqrt{ \frac{(sec \:A - 1) {}^{2}  }{(sec \: A + 1)(sec \:A - 1) } }   \:  \:  +  \:  \:  \sqrt{ \frac{ {(sec \:A + 1) }^{2} }{(sec \: A - 1)(sec \: A + 1)} } }} \\  \\  :  \longrightarrow \tt{ \green{ \: \sqrt{ \frac{( {sec \: A - 1)}^{ \cancel2} }{ {sec}^{ \cancel2} A - 1} } +  \sqrt{ \frac{( {sec \: A + 1)}^{ \cancel2} }{ {sec}^{ \cancel2} A - 1} }    }} \\  \\  :  \longrightarrow \tt{ \green{  \: \frac{sec \: A - 1}{sec \: A - 1}  +  \frac{sec \:A + 1 }{sec \:A - 1 }  }} \\  \\  :  \longrightarrow \tt{ \green{ \:  \frac{(sec \: A - 1) + (sec \: A + 1)}{ sec  \: A - 1}}}  \\  \\ :  \longrightarrow \tt{ \green{   \frac{sec \:A -  \cancel1 + sec \:  A + \cancel1}{sec \: A - 1}  }} \\  \\  :  \longrightarrow \tt{ \green{ \: \frac{2 \: sec \: A}{tan \: A}  }} \\  \\  :  \longrightarrow \tt{ \green{ \:  \frac{ \frac{2}{ \cancel{cos \: A}} }{ \frac{sin \: A}{ \cancel{cos \:A} } } }} \\  \\  :  \longrightarrow \tt{ \green{ \:  \frac{2}{sin \: A} }} = 2 \: cosec \: A \\  \\  \tt{ \therefore \: L.H.S = R.H.S}

------------------------------

@MissSolitary

------------------------------

Similar questions