Math, asked by latalohia4141, 7 months ago

√(secA-1)/(secA+1) + √(secA+1)/(secA-1) = 2cosecA

Answers

Answered by Ves1857
6

Refer attachment for your answer

Attachments:
Answered by Tomboyish44
21

To Prove:

\sf \sqrt{\dfrac{secA - 1}{secA + 1}} \ + \ \sqrt{\dfrac{secA + 1}{secA - 1}} = 2cosecA

Solution:

Taking the LHS we get:

\Longrightarrow \sf \sqrt{\dfrac{secA - 1}{secA + 1}} \ + \ \sqrt{\dfrac{secA + 1}{secA - 1}}

Rationalizing the denominator we get;

\Longrightarrow \sf \sqrt{\dfrac{secA - 1}{secA + 1}} \times \sqrt{\dfrac{secA - 1}{secA - 1}} + \ \sqrt{\dfrac{secA + 1}{secA - 1}} \times \sqrt{\dfrac{secA + 1}{secA + 1}}

\Longrightarrow \sf \sqrt{\dfrac{secA - 1}{secA + 1} \times \dfrac{secA - 1}{secA - 1}} + \ \sqrt{\dfrac{secA + 1}{secA - 1} \times \dfrac{secA + 1}{secA + 1}}

Using the below algebraic identities we get:

  • (a - b)(a - b) = (a - b)²
  • (a + b)(a + b) = (a + b)²
  • (a + b)(a - b) = a² - b²

\Longrightarrow \sf \sqrt{\dfrac{\big(secA - 1\big)^2}{\big(secA\big)^2 - \big(1\big)^2}} + \ \sqrt{\dfrac{\big(secA + 1\big)^2}{\big(secA\big)^2 - \big(1\big)^2}}

Using sec²A - 1 = tan²A we get;

\Longrightarrow \sf \sqrt{\dfrac{\big(secA - 1\big)^2}{tan^2A}} + \ \sqrt{\dfrac{\big(secA + 1\big)^2}{tan^2A}}

Roots and squares get cancelled.

\Longrightarrow \ \sf \dfrac{secA - 1}{tanA} + \dfrac{secA + 1}{tanA}

\Longrightarrow \ \sf \dfrac{secA - 1 + secA + 1}{tanA}

\Longrightarrow \ \sf \dfrac{2secA}{tanA}

We know that;

  • secA = 1/cosA
  • tanA = sinA/cosA

\Longrightarrow \ \sf \dfrac{2 \times \bigg[\dfrac{1}{cosA}\bigg]}{\bigg[\dfrac{sinA}{cosA}\bigg]}

\Longrightarrow \ \sf \dfrac{2}{sinA}

We know that;

  • 1/sinA = cosecA

\Longrightarrow \ \sf 2 cosecA

LHS = RHS

Hence proved.


EliteSoul: Awesome! :)
Tomboyish44: Thank you! :D
MisterIncredible: Mind Blowing ! (☉。☉)!
Tomboyish44: Thank you! :)
Similar questions