Math, asked by glitchersfun, 7 months ago

SecA(1-SinA)(SecA+TanA)=1​

Answers

Answered by acchujoshi2018
0

Step-by-step explanation:

secA(1- sinA)( secA+tanA)

= 1/cosA(1- sinA)( 1/cosA+sinA/cosA)

= (1- sinA/cosA)(1+sinA/cosA)

= 1-sinA × 1+ sinA/cos^2A

= (1- sinA)^2/cos^2A

= cos^2A/cos^2A

= 1

Hope it helps

Answered by Darkrai14
1

To prove:-

\rm sec \ A ( 1 - sin \ A)(sec \ A + tan \ A) = 1

Solution:-

LHS

\rm sec \ A ( 1 - sin \ A)(sec \ A + tan \ A)

sec A = 1/cos A

tan A = sin A / cos A

Hence,

\rm \dashrightarrow sec \ A ( 1 - sin \ A)\Bigg (\dfrac{1}{cos \ A} + \dfrac{sin \ A}{cos \ A}\Bigg )

\rm \dashrightarrow sec \ A ( 1 - sin \ A)\Bigg ( \dfrac{1+sin \ A}{cos \ A}\Bigg )

\rm \dashrightarrow sec \ A \Bigg ( \dfrac{( 1 - sin \ A)(1+sin \ A)}{cos \ A}\Bigg )

a² - = (a - b)(a + b)

\rm \dashrightarrow sec \ A \Bigg ( \dfrac{ 1 - sin^2 \ A}{cos \ A} \Bigg )

1 - sin² A = cos² A

\rm \dashrightarrow sec \ A \Bigg ( \dfrac{ cos^2 \ A}{cos \ A}\Bigg )

\rm \dashrightarrow sec \ A (cos \ A)

sec A = 1÷ cos A

\rm \dashrightarrow \dfrac{1}{cos \ A }(cos \ A)

\bf \dashrightarrow 1 = RHS

Hence, Proved.

Similar questions