SecA (1-sinA) (secA+tanA) = 1
Pls solve
Answers
Answered by
8
To proove : secA ( 1 - sinA ) ( secA + tanA ) = 1
LHS = >
= > secA( 1 - sinA ) ( secA + tanA )
By formula,
( a + b ) ( a - b ) = a² - b²
= > ( secA )² - ( tanA )²
= > sec²A - tan²A
1 = 1
RHS = LHS
Hence, Proved that SecA (1-sinA) (secA+tanA) = 1
LHS = >
= > secA( 1 - sinA ) ( secA + tanA )
By formula,
( a + b ) ( a - b ) = a² - b²
= > ( secA )² - ( tanA )²
= > sec²A - tan²A
1 = 1
RHS = LHS
Hence, Proved that SecA (1-sinA) (secA+tanA) = 1
Answered by
6
Given Equation is secA(1 - sinA)(secA + tanA)
= > 1.
Hope it helps!
Similar questions