Math, asked by Anonymous, 1 year ago

secA(1-sinA)(secA+tana)=1 prove that ​

Answers

Answered by Anonymous
12

Answer:

SecA ( 1 - sinA ) (secA + tan A)  

= (secA - sinA × secA)( secA + tanA )  

= (secA - sinA/cosA)( secA + tanA )

= ( secA - tanA) ( secA + tanA)

= sec²A - tan²A

=  1

Answered by Anonymous
2

To Prove:

  • secA ( 1 - sinA )(secA + tanA ) = 1

Step-by-step explanation:

Given,

L.H.S\\\\ = sec A ( 1 - sin A ) ( sec A + tan A  )  \\\\  =   ( \sec A - \sin A \sec A)( \sec A +  \tan A)

But,

we know that,

 \sec A =  \frac{1}{ \cos A}

Thus,

pUtting the values,

we get,

 = ( \sec A -  \frac{ \sin A}{ \cos A} )(  \sec A +  \tan A)

But,

we know that,

 \frac{ \sin \: A }{ \cos \: A }  =  \tan A

Thus,

pUtting the values,

we get,

 = ( \sec A -  \tan A)( \sec A + \tan A)

Now,

we know that,

(x + y)(x - y) =  {x}^{2}  -  {y}^{2}

Thus,

we get,

 =  { \sec }^{2} A -  { \tan }^{2} A \:  \\  \\  = 1  \\  \\  = \:  R.H.S

Thus,

L.H.S = R.H.S

Hence, Proved

Similar questions