Math, asked by suhani11112005, 2 months ago

(SecA+ cos A) (secA - cos A) ​

Answers

Answered by kailashmannem
162
  •  \orange{\textsf{(Sec A + Cos A) (Sec A - Cos A)}}

We know that,

  • (a - b) (a + b) = a² - b²

  • Here,

  • a = Sec A

  • b = Cos A

Substituting,

  • Sec² A - Cos ² A

We know that,

  • 1 + Tan² A = Sec² A

  • 1 - Sin² A = Cos² A

Substituting,

  • 1 + Tan² A - (1 - Sin² A)

  • 1 + Tan² A - 1 + Sin² A

  • Tan² A + Sin² A

Therefore,

  •  \boxed{\purple{\textsf{(Sec A + Cos A) (Sec A - Cos A) = Tan² A + Sin² A}}}
Answered by LysToxique
805

To find:-

(SecA+ cos A) (secA - cos A)

Formulae used:-

  • (a - b) (a + b) = a² - b²
  • 1 + Tan² A = Sec² A
  • 1 - Sin² A = Cos² A

And here,

a = Sec A

b = Cos A

Solution:-

By substituting the values,

= 1 + Tan² A - (1 - Sin² A)

= 1 + Tan² A - 1 + Sin² A

= Tan² A + Sin² A

 \mathtt{therefore,(SecA+ cosA)(secA - cos A)}

 \mathtt{= Tan² A + Sin² A\: }

Similar questions