(seca+cos a)(seca- cosa)=tan^2a+sin^2a
Answers
Answered by
5
LEFT HAND SIDE :-
(secA + cosA) (secA-cosA)
We have here the identity :-
(a+b) (a-b) =a²-b²
Applying the same we have :-
= sec²A - cos²A
=1 + tan²A - 1 + sin²A
=tan²A + sin²A
=RHS
KEY POINTS TO REMEMBER :-
☸️ 1 + tan²A = sec²A
☸️ sin²A + cos²A = 1
☸️ 1 + cot²A = cosec²A
☸️ cos²A = 1 - sin²A
Since,
We proved LHS = RHS
Hence, solved!
Answered by
3
Step-by-step explanation:
LHS
(seca + cos a )( Sec a -cos a)
[(a+b ) (a-b) ] = a^2- b^2
So
sec^2a -cos^2a. eq1
{sec^2a = 1+tan^2a, cos^2a = 1-sin^2a}
Putting the value in eq 1
1+tan^2 a - ( 1-sin^2 a)
1+tan^2 a- 1 +sin^2 a
tan^2 +sin^2 a
LHS = RHS
Hence proved
Similar questions