Math, asked by akshay2416, 1 year ago

(secA+cosA) (secA-cosA)=tanA*tanA+sinA*sinA

Answers

Answered by Anonymous
41
Hey Friends!!

Here is your answer↓⬇

⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇⬇


This question is solved by 2 methods:-)


 \huge \boxed{1st \:  \: method:-)}

 \bf = >  ( \sec(x)  +  \cos(x) )( \sec(x)  -  \cos(x) ) =  { \tan }^{2} x +  { \sin }^{2} x.


 \huge \bf \underline{Solving \:  LHS}

 \bf =  { \sec }^{2} x -  { \cos }^{2}x.


 \bf = (1 +  { \tan }^{2} x) - (1 -  { \sin }^{2} x).



 \bf = 1 +  { \tan }^{2} x - 1 +  { \sin }^{2} x.


 \bf =  { \tan }^{2} x +  { \sin }^{2}x.


 \huge \boxed{LHS = RHS.}



 \huge \boxed{2nd  \:  \: method:-)}


 \huge \bf \underline{Solving \:  LHS.}

\bf =  ( \sec(x)  +  \cos(x) )( \sec(x)  -  \cos(x) ) .


 \bf = ( \frac{1}{ \cos(x) }  +  \cos(x) )( \frac{1}{ \cos(x) }  -  \cos(x) ).



 \bf = ( \frac{1 +  { \cos}^{2}x }{ \cos(x) } )( \frac{1 -  { \cos }^{2} x}{ \cos(x) } ).



 \bf = ( \frac{1 +  { \cos }^{2} x}{ { \cos }^{2}x } )( { \sin }^{2}x).



 \bf = ( \frac{1}{ { \cos }^{2}x }  +  \frac{ { \cos }^{2}x }{ { \cos }^{2}x } )( { \sin }^{2} x).



 \bf = ( \frac{1}{ { \cos }^{2}x }  + 1)( { \sin }^{2} x).



 \bf =  \frac{ { \sin }^{2} x}{ { \cos }^{2} x}  +  { \sin }^{2} x.



 \bf =  { \tan }^{2} x +  { \sin }^{2} x.


 \huge \boxed{LHS = RHS.}

✅✅ Hence , it is proved ✔✔.



 \huge \boxed{THANKS}



 \huge \bf \underline{Hope \:  it \:  is  \: helpful  \: for  \: you}

Anonymous: thanks bahna
AJAYMAHICH: bahut achhe .........
AJAYMAHICH: tum lappy se ye app chala rhe ho kya
Anonymous: nahi bhaiya
AJAYMAHICH: to bhai ye kse kr pate ho itna kuch
AJAYMAHICH: heheeh
Anonymous: awesome bhai
Similar questions