Math, asked by shyamram76, 7 months ago

secA divided by tanA + cotA is equal to?​

Answers

Answered by prince5132
25

GIVEN :-

  • {sec A/(tan A + cot A)}

TO FIND :-

  • The value of {sec A/(tan A + cot A)}.

SOLUTION :-

{sec A/(tan A + cot A)}

As we know that the identity :- tan A = sin A/cos A and also cot A = cos A/sin A.

⇒ [ sec A/{ (sin A/cos A) + (cos A/sin A) } ]

By cross multiplication we get,

⇒ sec A/{ (sin A . sin A + cos A . cos A)/cos A sin A}

⇒ sec A/{ (sin² A + cos² A)/sin A cos A}

As we know that the identity :- sin² A + cos² A = 1

⇒ sec A/(1/cos A sin A)

As we know that the identity :- sec A = 1/cos A.

⇒ (1/cos A) × (cos A sin A/1)

sin A.

Hence the value of {sec A/(tan A + cot A)} is sin A.

Answered by Anonymous
126

Given:

 \sf \to   \dfrac{ \sec A }{\tan A +  \cot A}

Find:

 \sf \to Value \:  of  \: \dfrac{ \sec A }{\tan A +  \cot A}

Solution:

we, have

 \sf \to \dfrac{ \sec A }{\tan A +  \cot A}

we, know that

 \boxed{ \sf  \tan A =  \dfrac{ \sin A}{\cos A}} \:  \sf and \:  \boxed{ \sf  \cot A =  \dfrac{ \cos A}{\sin A}}

Put these values in the Question we, get

 \sf \to \dfrac{ \sec A }{\tan A +  \cot A}

 \sf \to \dfrac{ \sec A }{ \dfrac{ \sin A}{\cos A} +  \dfrac{ \cos A}{\sin A}}

\qquad\qquad\qquad Taking L.C.M

 \sf \to \dfrac{ \sec A }{ \dfrac{ {\sin}^{2} A +  {\cos}^{2}  A }{\cos A \sin A } }

_________________

Now, we know that

 \boxed{\sf {\sin}^{2} A +  {\cos}^{2}  A = 1}

Using this value we, got

 \sf \to \dfrac{ \sec A }{ \dfrac{ {\sin}^{2} A +  {\cos}^{2}  A }{\cos A \sin A } }

 \sf \to \dfrac{ \sec A }{ \dfrac{1}{\cos A \sin A } }

 \sf \to \sec A  \times  \dfrac{\cos A \sin A}{1}

 \sf \to \sec A  \times \cos A \sin A

_________________

By, using

 \boxed{\sf \sec A   =  \dfrac{1}{\cos A} }

So, putting this value

 \sf \to \sec A  \times \cos A \sin A

 \sf \to  \dfrac{1}{\cos A} \times \cos A \sin A

 \sf \to  \dfrac{1}{ \cancel{\cos A}} \times \cancel{ \cos A} \sin A

 \sf \to  1 \times \sin A

 \sf \to  \sin A

_________________

 \therefore\underline{ \sf \dfrac{ \sec A }{\tan A +  \cot A} =  \sin A }

Similar questions