(secA - Tan A)² (1+ sin A) = 1-sin A
Answers
Answered by
1
Step-by-step explanation:
= (1-sinA)/(1+sinA) × (1-sinA)/(1-sinA) By Rationalization
= (1-sinA)²/(1+sinA)(1-sinA)
= (1-sinA)/(1+sinA) = LHS
*******************************************
Alternatively,
LHS
= (sec A - tan A)²; express all as sine and cosine
= (1/cos A - sin A/cos A)²
= [(1 - sin A)/cos A)]²
= (1 - sin A)²/cos² A
= (1 - sin A)²/(1 - sin² A)
= (1 - sin A)²/[(1 - sin A)(1 + sin A)
= (1 - sin A)/(1 + sin A)
= RHS
hope it's help you....
Answered by
1
Similar questions