(secA - tan
A)/(cosecA + cot
Answers
Answered by
1
Answer:
we know that
sec^{2}A-tan^{2}A=1\\\\(secA+tanA)(secA-tanA)=1\\\\secA+tanA=\frac{1}{secA-tanA}.......(1)
we know that
cosec^{2}A-cot^{A}=1\\\\(cosecA+cotA)(cosecA-cotA)=1\\\\cosecA+cotA=\frac{1}{cosecA-cotA}....(2)
Now,\\\frac{secA+tanA}{cosecA+cotA}
by using equations (1)&(2)
=\frac{\frac{1}{secA-tanA}}{\frac{1}{cosecA-cotA}}
=(\frac{1}{secA-tanA}).(\frac{cosecA-cotA}{1})\\\\=\frac{cosecA-cotA}{secA-tanA}
I hope this answer helps you
Similar questions