secA+tanA+1/1+secA-tanA=1+sinA/cosA
Answers
Answered by
2
Answer:
LHS= (secA-tanA+1)/(secA+tanA+1)
We know the relation that,
1+tan^2A=sec^2A
=> 1=sec^2A-tan^2A
Applying the above relation in the LHS, we have,
LHS=(secA-tanA+sec^2A-tan^2A)/(secA+tanA+1)
=[secA-tanA+(secA-tanA)(secA+tanA)/(secA+tanA+1) [since, a^2 - b^2 = (a-b)(a+b)]
Taking (secA-tanA) common from the terms in the. numerator
=(secA-tanA)(1+secA+tanA)/(secA+tanA+1)
= secA-tanA
= 1/cosA - sinA/cosA
=(1-sinA)/cosA
Hence, proved.
Answered by
0
Answer:
Similar questions