Math, asked by Durgaprasadh, 10 months ago

secA + tana =1/2;then sinA=?

Answers

Answered by shadowsabers03
1

Given that,

\longrightarrow\sf{\sec A+\tan A=\dfrac{1}{2}\quad\quad\dots(1)}

We know that,

\longrightarrow\sf{\sec^2A-\tan^2A=1}

Factorising LHS,

\longrightarrow\sf{(\sec A-\tan A)(\sec A+\tan A)=1}

From (1),

\longrightarrow\sf{\dfrac{1}{2}\cdot(\sec A-\tan A)=1}

\longrightarrow\sf{\sec A-\tan A=2\quad\quad\dots(2)}

On adding (1) and (2), we get,

\longrightarrow\sf{(\sec A+\tan A)+(\sec A-\tan A)=\dfrac{1}{2}+2}

\longrightarrow\sf{2\sec A=\dfrac{5}{2}}

\longrightarrow\sf{\sec A=\dfrac{5}{4}}

\longrightarrow\sf{\cos A=\dfrac{4}{5}\quad\quad\dots(3)}

On subtracting (2) from (1), we get,

\longrightarrow\sf{(\sec A+\tan A)-(\sec A-\tan A)=\dfrac{1}{2}-2}

\longrightarrow\sf{2\tan A=-\dfrac{3}{2}}

\longrightarrow\sf{\tan A=-\dfrac{3}{4}}

\longrightarrow\sf{\dfrac{\sin A}{\cos A}=-\dfrac{3}{4}}

From (3),

\longrightarrow\sf{\dfrac{\sin A}{\left(\dfrac{4}{5}\right)}=-\dfrac{3}{4}}

\longrightarrow\sf{\sin A=-\dfrac{3}{4}\cdot\dfrac{4}{5}}

\longrightarrow\sf{\underline{\underline{\sin A=-\dfrac{3}{5}}}}

Similar questions