Math, asked by Savio1242005, 7 months ago

(secA + tanA)(1 - sinA) = cosA

Answers

Answered by Snapskg730
1

Answer:

above pic

follow me on brainly

Attachments:
Answered by Darkrai14
0

To prove:-

(\sec A + \tan A)(1-\sin A)= \cos A

Solution:-

(\sec A + \tan A)(1-\sin A)= \cos A

\dashrightarrow \Bigg (\dfrac{1}{\cos \ A} + \dfrac{\sin A}{\cos A} \Bigg )(1-\sin A)= \cos A \qquad ...\Bigg [ \because\quad\sec A = \dfrac{1}{\cos A } \ \ \rm and \ \ tan \ A = \dfrac{sin \ A}{cos \ A} \Bigg ]

\dashrightarrow \Bigg (\dfrac{1+\sin A}{\cos A} \Bigg )(1-\sin A)= \cos A

Multiply both the sides of the equation by cos A

\dashrightarrow (\cos A) \Bigg (\dfrac{1+\sin A}{\cos A} \Bigg )(1-\sin A)= (\cos A)(\cos A)

\dashrightarrow (1+\sin A )(1-\sin A)={\cos }^2 A

\dashrightarrow 1-{\sin}^2 A={\cos }^2 A

Since, cos² A = 1 - sin² A

Therefore,

\dashrightarrow {\cos}^2 A={\cos }^2 A

Hence, Proved.

Similar questions