Math, asked by saisumaj, 1 month ago

(secA+tanA)(1-sinA) please send the answer please fast​

Answers

Answered by syamalghosh606
0

Answer:

cos A

Step-by-step explanation:

(1--sin^2A)/cosA=cosA

Answered by MrImpeccable
5

ANSWER:

To Solve:

  • (secA + tanA)(1 - sinA)

Solution:

We are given that,

\implies(\sec A+\tan A)(1-\sin A)

We know that,

\hookrightarrow\sec\theta=\dfrac{1}{\cos\theta}

So,

\implies(\sec A+\tan A)(1-\sin A)

\implies\bigg(\dfrac{1}{\cos A}+\tan A\bigg)\bigg(1-\sin A\bigg)

We also know that,

\hookrightarrow\tan\theta=\dfrac{\sin\theta}{\cos\theta}

So,

\implies\bigg(\dfrac{1}{\cos A}+\tan A\bigg)\bigg(1-\sin A\bigg)

\implies\bigg(\dfrac{1}{\cos A}+\dfrac{\sin A}{\cos A}\bigg)\bigg(1-\sin A\bigg)

Taking LCM,

\implies\bigg(\dfrac{1+\sin A}{\cos A}\bigg)\bigg(1-\sin A\bigg)

On simplifying,

\implies\bigg(\dfrac{(1+\sin A)(1-\sin A)}{\cos A}\bigg)

We know that,

\hookrightarrow(x-y)(x+y)=x^2-y^2

Hence,

\implies\bigg(\dfrac{(1+\sin A)(1-\sin A)}{\cos A}\bigg)

\implies\bigg(\dfrac{1^2-\sin^2A)}{\cos A}\bigg)

\implies\bigg(\dfrac{1-\sin^2A}{\cos A}\bigg)

We know that,

\hookrightarrow1-\sin^2\theta=\cos^2\theta

So,

\implies\bigg(\dfrac{1-\sin^2A}{\cos A}\bigg)

\implies\bigg(\dfrac{\cos^2A}{\cos A}\bigg)

\implies\dfrac{\cos^2A}{\cos A}

Dividing in numerator and denominator by cos A,

\bf\implies cos A

Similar questions