Math, asked by mmmmmmm56, 4 months ago

[secA- tanA]²= 1-SinA / 1+sinA

Answers

Answered by PranavKamalakannan
2

Answer:

Here is your answer Enjoy

Attachments:
Answered by ItzShinyQueenn
3

\bf\red {\underline {We\:Have\:To\:Prove:-}}

  • \tt {( secA - tanA)^{2}   =  \frac{1 - sinA}{1  +sinA}}

\bf\pink{\underline {Solution:-}}

\tt {Left \:  Side}

\tt { = ( secA - tanA)^{2} }

\tt { =  {sec}^{2}A - 2sec AtanA +   {tan}^{2} A}

 \tt {=  \frac{1}{ {cos}^{2} A}  - 2 \times  \frac{1}{cosA}  \times  \frac{sinA}{cosA}  +  \frac{ {sin}^{2} A}{ {cos}^{2}A }}

\tt{ =  \frac{1}{ {cos}^{2}A }  -  \frac{2sinA}{ {cos}^{2} A}   +  \frac{ {sin}^{2}A }{ {cos}^{2} A}}

 \tt {=  \frac{1 - 2sinA +  {sin}^{2}A }{ {cos}^{2}A } }

 \tt {=  \frac{1 - sinA - sinA +  {sin}^{2}A }{1 -  {sin}^{2}A} }

 \tt {=   \frac{(1 - sinA) - sinA(1 - sinA)}{(1 + sinA)(1 - sinA)}}

 \tt{=  \frac{(1 - sinA)(1 - sinA)}{(1 + sinA)(1 - sinA)}}

 \tt{=  \frac{1 - sinA}{1  +sinA } }

 \tt{= Right  \: Side}

\bf\green{[Hence\:Proved]}

Important Formulas :-

  • \bf\blue{{sin}^{2} θ + {cos}^{2} θ = 1}
  • \bf\blue{{sec}^{2} θ - {tan}^{2} θ = 1}
  • \bf\blue{{cosec}^{2} θ - {cot}^{2} θ = 1}
Similar questions