(secA-tanA)² = 1-sinA/1+sinA
Answers
Answered by
9
1-sinA/1+sinA=(secA-tanA)²
RHS
1-sinA/1+sinA
Rationalising the denominator
1-sinA (1-SinA) /1+sinA(1-SinA)
(1-SinA)²/ 1² -(Sin²A)
(1-SinA)²/ 1 -(Sin²A)
(1-SinA)² /Cos² A
[ 1 -Sin²A = cos²A]
(1-SinA/CosA)²
(1/CosA-SinA/CosA)²
(SecA-tanA)²
L.H S = R H.S
Answered by
7
HEYA USER ❤️
REFER TO THE ATTACHMENT ❣️
Attachments:
Similar questions