Math, asked by ashabhatt7669, 4 months ago

(secA-tanA)^2 (1+sinA) = 1-sinA

please prove​

Answers

Answered by InfiniteSoul
0

\sf{\underline{\boxed{\purple{\large{\bold{Solution}}}}}}

⠀⠀⠀⠀

\sf :\implies\:{\bold{ ( SecA - TanA)^2 ( 1 + Sin A ) = 1 - Sin A  }}

⠀⠀⠀⠀

⠀⠀⠀

\sf{\red{\boxed{\bold{Sec A = \dfrac{1}{Cos A} }}}}

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{TanA = \dfrac{ Sin A}{ Cos A}}}}}

⠀⠀⠀⠀

\sf :\implies\:{\bold{ ( \dfrac{1}{CosA} - \dfrac{SinA}{CosA} )^2 ( 1 + Sin A ) = 1 - Sin A  }}

⠀⠀⠀⠀

\sf :\implies\:{\bold{ ( \dfrac{ 1 - Sin A}{ Cos A} )^2 ( 1 + Sin A ) = 1 - Sin A  }}

⠀⠀⠀⠀

\sf :\implies\:{\bold{ ( \dfrac{( 1 - SinA)^2}{ Cos^2A} )( 1 + Sin A ) = 1 - Sin A  }}

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{Cos^2A = 1- Sin^2A}}}}

⠀⠀⠀⠀

\sf :\implies\:{\bold{ ( \dfrac{( 1 - SinA)^2}{ 1 - sin^2A} )( 1 + Sin A ) = 1 - Sin A  }}

⠀⠀⠀⠀

\sf{\red{\boxed{\bold{a^2 - b^2 = ( a + b ) ( a - b ) }}}}

⠀⠀⠀⠀

\sf :\implies\:{\bold{ ( \dfrac{( 1 - SinA)^2}{ ( 1 - SinA) ( 1 + Sin A) } )( 1 + Sin A ) = 1 - Sin A  }}

⠀⠀⠀⠀

\sf :\implies\:{\bold{ ( \dfrac{( 1 - SinA)( 1 - SinA)}{ ( 1 - SinA) ( 1 + Sin A) } )( 1 + Sin A ) = 1 - Sin A  }}

⠀⠀⠀⠀

\sf :\implies\:{\bold{ \dfrac{( 1 - SinA)}{ ( 1 + Sin A) } \times ( 1 + Sin A ) = 1 - Sin A  }}

⠀⠀⠀⠀

\sf :\implies\:{\bold{  1 - SinA= 1 - Sin A  }}

⠀⠀⠀⠀

LHS = RHS

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀..... Hence Proved

⠀⠀⠀⠀

Similar questions