secA + tanA = p , find the value of p
Answers
Answered by
1
i think question data is not sufficient to solve this question
secA+tanA=p......eq(1),
since
sec²A-tan²A=1,
then
(secA+tanA).(secA-tanA)1
p.(secA-tanA)=1,
then
(secA-tanA)=1/p,......eq(2),
adding equation 1st and 2nd we get,
2secA=p+1/p
secA+tanA=p......eq(1),
since
sec²A-tan²A=1,
then
(secA+tanA).(secA-tanA)1
p.(secA-tanA)=1,
then
(secA-tanA)=1/p,......eq(2),
adding equation 1st and 2nd we get,
2secA=p+1/p
Answered by
0
Answer:
Given :
sec A + tan A = p
I am replacing p by ' k '
sec A + tan A = k
We know :
sec A = H / B & tan A = P / B
H / B + P / B = k / 1
H + P / B = k / 1
So , B = 1
H + P = k
P = k - H
From pythagoras theorem :
H² = P² + B²
H² = ( H - k )² + 1
H² = H² + k² - 2 H k + 1
2 H k = k² + 1
H = k² + 1 / 2 k
P = k - H
P = k² - 1 / 2 k
Now write k = p we have :
Base = 1
Perpendicular P = P² - 1 / 2 P
Hypotenuse H = P² + 1 / 2 P
Value of cosec A = H / P
cosec A = P² + 1 / 2 P / P² - 1 / 2 P
cosec A = P² + 1 / P² - 1
Therefore , we got value .
Similar questions
History,
7 months ago
Computer Science,
7 months ago
Computer Science,
7 months ago
Math,
1 year ago
Math,
1 year ago
Biology,
1 year ago
Social Sciences,
1 year ago