Math, asked by kodechakailash946, 8 months ago

SecA+TanA= P prove that p^2-1/p^2+1 = sinA​

Answers

Answered by BrainlyTornado
1

 \frac{  {(sec(A)  +  \tan(A))}^{2}   -  1 }{{(sec(A)  +  \tan(A))}^{2}  + 1} \\  \frac{  {(sec(A)  +  \tan(A))}^{2}   -   { \sec }^{2} A +  {tan}^{2} A}{{(sec(A)  +  \tan(A))}^{2}  + { \sec }^{2} A  -  {tan}^{2} A} \\  \frac{{ \sec A \:  }+  {tan \: A (2tanA)}}{{ \sec A }+  {tan \: A(2secA)}}  \\  = sin \:A

Similar questions