secA+tanA=p
then prove that
p^2-1/p^2+1= sinA
Answers
Answered by
2
secA+tanA=p ----------------------------(1)
We know that,
sec²A-tan²A=1
or, (secA+tanA)(secA-tanA)=1
or, p(secA-tanA)=1
or, secA-tanA=1/p -----------------------(2)
Adding (1) and (2) we get,
2secA=p+1/p
or, secA=(p²+1)/2p
∴, cosA=1/secA=2p/(p²+1)
∴, sinA=√(1-cos²A)
=√{1-4p²/(p²+1)²
=√{(p²+1)²-4p²}/(p²+1)²
=√(p⁴+2p²+1-4p²)/(p²+1)
=√(p²-1)²/(p²+1)
=(p²-1)/(p²+1) (Proved)
Answered by
2
Answer:
secA+tanA=p .....(i)
We know sec2A–tan2A=1
=>(secA–tanA)(secA+tanA)=1
=>(secA–tanA)(p)=1
=>secA–tanA=1p .....(ii)
Adding (i) and (ii)
secA+tanA+secA–tanA=p+1p
=>2secA=p2+1p
=>secA=p2+12p
=>cosA=2pp2+1
=>1–sin2A−−−−−−−√=2pp2+1
=>sin2A=1−(2pp2+1)2
=>sin2A=1−(4p2(p2+1)2)
=>sin2A=((p2+1)2−4p2(p2+1)2)
=>sin2A=((p2−1)2(p2+1)2)
=>sin2A=(p2−1p2+1)2
=>sinA=p2−1p2+1
=>cosecA=p2+1p2−1
Similar questions