secA + tanA = p then tanA =?
Answers
Answered by
3
secA =p- tanA
squaring both sides: we get
sec2A=(p−tanA)2
sec2A=p2+tan2A−2ptanA
sec2A−tan2A=p2−2ptanA ,since we know the identity( 1+tan2A=secA)
hence, 1= p2−2ptanA
tanA= (p2−1)/2p
now,according to right angled triangle, tanA= perpendicular(P)/base(b)
and sinA=perpendicular(P)/hypotnuese(h)
hence we know. P= p2−1,base=2p
so, H= p2+1 (calculated by hypotnuese theorem)
now SinA= P/H= ( p2−1)/(p2+1)−−ans
Answered by
0
Answer:
SecA=p-tanA
Sec²A=(p-tanA)²
Sec²A=p²+tan²A-2ptanA
Sec²A-tan²A=p²-2ptanA
1=p²-2ptanA
tanA=p²-1/2p,
tanA=sinA/cosA
So, sinA=p²-1
Similar questions