SecA -tanA/secA+tanA = cos^2A/(1+sinA)^2
Answers
Answered by
16
To Prove: (secA - tanA)/(secA + tanA) = cos²A/(1 + sinA)²
Given:
- secA = 1/cosA
- tanA = sinA/cosA
L.H.S → (secA - tanA)/(secA + tanA)
→ (1/cosA - sinA/cosA)/(1/cosA + sinA/cosA)
→ (1 - sinA)/cosA × cosA/(1 + sinA)
→ (1 - sinA)/(1 + sinA)
Multiplying by (1 + sinA)/(1 + sinA),
→ (1 - sin²A)/(1 + sinA)²
→ cos²A/(1 + sin²A) = R.H.S
Hence Proved
Answered by
4
Answer:
To Prove:
(SecA - tanA) /SecA + tanA) = Cos^2A/1 + SinA)^2
Given:
- SecA = 1/CosA
- tanA = SinA/CosA
L.H.S => (SecA - tanA) / (SecA + tanA)
=> (1/cosA - sinA/cosA) / (1/cosA + sinA / cosA)
=> (1 - sinA) / cosA × cosA / (1 + SinA)
=> (1 - SinA) / (1 + SinA)
Multiplying by
(1 + sinA) /(1 + sinA),
=> (1 + sin^2A) / (1 + sinA) ^2
=> Cos^2A / (1 + sin^2A) = R.H.S
Step-by-step explanation:
@SSR Fan
Similar questions