Math, asked by adi365, 1 year ago

secA-tanA/secA+tanA=cos^2A/(1+sinA)^2

Answers

Answered by Gokul02
47
It simple .go on making it
Attachments:
Answered by mysticd
34

Answer:

\frac{secA-tanA}{secA+tanA}\\=\frac{cos^{2}A}{(1+sin^{2}A)}

Step-by-step explanation:

LHS =\frac{secA-tanA}{secA+tanA}\\=\frac{(secA-tanA)(secA+tanA)}{(secA+tanA)(secA+tanA)}\\=\frac{sec^{2}A-tan^{2}A}{(secA+tanA)^{2}}

/* By Trigonometric identity:

sec²A-tan²A = 1 */

=\frac{1}{(secA+tanA)^{2}}

=\frac{1}{\left(\frac{1}{cosA}+\frac{sinA}{cosA}\right)^{2}}\\=\frac{1}{\left(\frac{(1+sinA)}{cosA}\right)^{2}}\\=\frac{1}{\frac{(1+sinA)^{2}}{cos^{2}A}}\\=\frac{cos^{2}A}{(1+sin^{2}A)}\\=RHS

Therefore,

\frac{secA-tanA}{secA+tanA}\\=\frac{cos^{2}A}{(1+sin^{2}A)}

•••♪

Similar questions