√secA-tanA/secA+tanA × √secA+cotA/secA+cotA= Sec A - tan A + cosec A- cot A
Answers
✍
Solution : ⤵️
Start by expanding out to primitive trig functions. The left-hand side expands as:
secA+tanAcscA+cotA=1+sinAcosA1+cosAsinA=1+sinA1+cosAtanAsecA+tanAcscA+cotA=1+sinAcosA1+cosAsinA=1+sinA1+cosAtanA
The right-hand side expands as:
cscA−cotAsecA−tanA=1−cosAsinA1−sinAcosA=1−cosA1−sinAcotAcscA−cotAsecA−tanA=1−cosAsinA1−sinAcosA=1−cosA1−sinAcotA
Our objective is to multiply both sides by the same factors,
simplifying them piece by piece until they are obviously equal.
To start let’s multiply the expanded left-hand side and right-hand side by tanAtanA.
The left-hand side becomes:
1+sinA1+cosAtan2A1+sinA1+cosAtan2A
and the right-hand side becomes:
1−cosA1−sinA1−cosA1−sinA
That 1−sinA1−sinA screams at us to use the difference of two squares.
Let’s multiply both sides by 11+sinA11+sinA.
This will also cancel out a term on the left-hand side.
The left hand side becomes:
1−cos2Acos2A=sin2Acos2A=tan2A1−cos2Acos2A=sin2Acos2A=tan2A
And of course tan2A=tan2Atan2A=tan2A. Notice that we must have sinA≠0,cosA≠0,cosA≠−1,sinA≠1sinA≠0,cosA≠0,cosA≠−1,sinA≠1. So A≠kπ2A≠kπ2 for integer k
tan2A1+cosAtan2A1+cosA
The right-hand side becomes: