Math, asked by Anonymous, 10 months ago

secA +tanA/secA-tanA - secA -tanA /secA +tanA​

Answers

Answered by 217him217
2

Answer:

0

Step-by-step explanation:

secA + tanA/secA - tanA - secA - tanA/secA + tanA

= secA - secA + tanA/secA - tanA/secA - tanA + tanA

= 0

Answered by Anonymous
60

Question :

Solve  \dfrac{ \sec(a)  +  \tan(a) }{ \sec(a) -  \tan(a)  }  -  \dfrac{ \sec(a)  -  \tan(a) }{ \sec(a) +  \tan(a)  }

Trigonometric Formula's:

  1. sin²A + cos²A = 1
  2. sec²A - tan²A = 1
  3. cosec²A - cot²A = 1

Solution :

 \dfrac{ \sec(a) +  \tan(a)  }{ \sec(a)  -  \tan(a) }  -  \dfrac{ \sec(a)  +  \tan(a) }{ \sec(a)  +  \tan(a) }

⇒Take LCM

 =  \frac{( \sec(a)  +  \tan(a)) {}^{2}   - ( \sec(a) -  \tan(a)) {}^{2}   }{( \sec(a)  -  \tan(a))( \sec(a)  +  \tan(a) ) }

 =  \frac{( \sec {}^{2} (a) +  \tan {}^{2} (a) +2 \tan(a) \sec(a)) - ( \sec {}^{2} (a)  +  \tan {}^{2} (a)   - 2 \tan(a)  \sec(a) ) }{ \sec {}^{2} (a) -  \tan {}^{2} (a)  }

we know that sec²A - tan²A = 1

 = 4 \sec(a) \tan(a)

it is the required solution!

__________________________________

More Trigonometric Formula's:

  1. sin2A = 2 sinA cosA
  2. cos2A = cos²A - sin²A
  3. tan2A = 2 tanA / (1 - tan²A)
Similar questions