Math, asked by sreejasarmah100, 14 days ago

secA +tanA/secA-tanA - secA -tanA /secA +tanA​

Answers

Answered by gimmelike
0

Answer:

0

2+2+2+ 2 + 2 + 2 = ?

3+3+ 3+ 3 + 3+3=

pls markbranilest

2

Answered by Anonymous
4

♣︎ Solution :

 \:  \:  \:  \:  \:  \:  :  \implies  \small{\frac{ \sec(x)  +  \tan(x) }{ \sec(x)  -  \tan(x) } -  \frac{ \sec(x)  -  \tan(x) }{  \sec(x) +  \tan(x) } }   \\

\:  \:  \:  \:  \:  \:  :  \implies  \small{\frac{ {  \big(\sec (x) +  \tan(x)  \big)}^{2} -  {\big(\sec (x)  -   \tan(x)  \big)}^{2}}{{\big(\sec (x) +  \tan(x)  \big)}^{}{\big(\sec (x)  -   \tan(x)  \big)}^{}}}  \\

\:  \:  \:  \:  \:  \:  :  \implies \small{ \frac{4 \tan(x) \sec(x)  }{ { \sec}^{2}(x) -  { \tan}^{2} (x) } } \\

\:  \:  \:  \:  \:  \:  :  \implies  \bf4 \sec(x)  \tan(x)  \\

♣︎ Some Important Identities :

 \:  \:  \:  \:  \:  \:   \:  \longmapsto  {(a + b)}^{2}  -  {(a - b)}^{2}  = 4ab \\

\:  \:  \:  \:  \:  \:   \:  \longmapsto { \sec}^{2} (x) -  { \tan }^{2} (x) = 1 \\

Similar questions