secA+tanA=u prove that tanA=(u^2-1)/2u
Answers
Answered by
1
Answer:
sec²A - tan²A =1
or, (sec A+tan A)(sec A- tan A)=1
or, sec A - tan A= 1/u .....(1)
&
secA+tanA=u .......(2)
(2)-(1), we get,
2 tan A =u - (1/u)= (u²-1)/u
or, tan A= (u²-1)/2u
Answered by
0
secA + tanA = u
squaring both side
(secA + tanA)^2 = u^2
sec^2A + tan^2A + 2 secA tanA = u^2
subtracting 1 from both side
sec^2A - 1 + tan^2A + 2 secA tanA = u^2 - 1
tan^2A + tan^2A + 2 secA tanA = u^2 - 1
2 tan^2A + 2 secA tanA = u^2 - 1
2 tanA ( tanA + secA) = u^2 - 1
2 tanA * u = u^2 - 1
tanA = (u^2 - 1)/2u
proved
Similar questions