Math, asked by adityarana007, 4 months ago

secA-tanA=x then find the value of secA-tanaA

Attachments:

Answers

Answered by TMarvel
1

Step-by-step explanation:

 \sec \theta  +  \tan \theta= x  \\  =  >  { (\sec\theta +  \tan\theta )}^{2}  =   {x}^{2}  \\  =  >  { \sec }^{2} \theta +  { \tan}^{2} \theta + 2 \sec\theta.\tan\theta =  {x}^{2}  \\  =  >  { \sec }^{2} \theta +  { \tan}^{2} \theta + 2 \sec\theta.\tan\theta  - 4 \sec\theta.\tan\theta=  {x}^{2} -  4 \sec\theta.\tan\theta \\  =  >  { \sec }^{2} \theta +  { \tan}^{2} \theta  -  2 \sec\theta.\tan\theta =  {x}^{2} -  4 \sec\theta.\tan\theta  \\  =  > { (\sec\theta  -  \tan\theta )}^{2}  = {x}^{2} -  4 \sec\theta.\tan\theta  \\  =  >\sec\theta  -  \tan\theta =  \sqrt{{x}^{2} -  4 \sec\theta.\tan\theta}

Similar questions