Math, asked by Adhyatma1813, 8 months ago

SecA tanB+tanA secB=2,secA secB+tanA tanB=k then k square=

Answers

Answered by MaheswariS
1

\textbf{Given:}

secA\,tanB+tanA\,secB=2

secA\,secB+tanA\,tanB=k

\textbf{To find:}

\text{The value of $k^2$}

\textbf{Solution:}

\text{Consider,}

k^2

=(secA\,secB+tanA\,tanB)^2

=sec^2A\,sec^2B+tan^2A\,tan^2B+2\,secA\,secB\,tanA\,tanB

=sec^2A(1+tan^2B)+tan^2A(sec^2B-1)+2\,secA\,secB\,tanA\,tanB

=sec^2A+sec^2A\,tan^2B+tan^2A\,sec^2B-tan^2A+2\,secA\,secB\,tanA\,tanB

=(sec^2A-tan^2A)+(sec^2A\,tan^2B+tan^2A\,sec^2B+2\,secA\,tanB\,tanA\,secB)

=(sec^2A-tan^2A)+(secA\,tanB+tanA\,secB)^2

=(1)+(2)^2

=1+4

=5

\textbf{Answer:}

\boxed{\textbf{The value of $\bf\,k^2$ is 5}}

Similar questions