secA = x + {1/(4x)}
Show that
secA + tanA = 2x or 1/(2x)
Answers
Answered by
3
sec A = x + 1/(4x)
sec^2 A = 1 + tan^2 A
x^2 + 1/2 + 1/(16x^2) = 1 + tan^2 A
x^2 - 1/2 + 1/(16x^2) = tan^2 A
± [x - 1/(4x)] = tan A
sec A + tan A = x + 1/(4x) ± (x - 1/(4x)) = 2x or 1/(2x)
sec^2 A = 1 + tan^2 A
x^2 + 1/2 + 1/(16x^2) = 1 + tan^2 A
x^2 - 1/2 + 1/(16x^2) = tan^2 A
± [x - 1/(4x)] = tan A
sec A + tan A = x + 1/(4x) ± (x - 1/(4x)) = 2x or 1/(2x)
Similar questions