Math, asked by kumariswati3730, 1 year ago

Secant squared theta minus cos square theta = sin square theta into secant squared theta + 1 prove that

Answers

Answered by shadowsabers03
46

We know that,

\sin^2\theta+\cos^2\theta=1 \\ \\ \therefore\ \sin^2\theta=1-\cos^2\theta

==============================================================

\sec^2\theta-\cos^2\theta \\ \\ (\sec\theta+\cos\theta)(\sec\theta-\cos\theta) \\ \\ (\frac{1}{\cos\theta}+\cos\theta)(\frac{1}{\cos\theta}-\cos\theta) \\ \\ (\frac{1+\cos^2\theta}{\cos\theta})(\frac{1-\cos^2\theta}{\cos\theta}) \\ \\ (\frac{1+\cos^2\theta}{\cos\theta})(\frac{\sin^2\theta}{\cos\theta}) \\ \\ \frac{(1+\cos^2\theta)\sin^2\theta}{\cos^2\theta} \\ \\ \frac{(1+\cos^2\theta)}{\cos^2\theta} \ \cdot \ \sin^2\theta \\ \\ (\frac{1}{\cos^2\theta}+1)\sin^2\theta \\ \\ \sin^2\theta(\sec^2\theta+1)

Hence proved!

Please trust me that the answer is on my own words and not from any sources.

Please mark it as the brainliest if this helps you.

Please ask me if you've any doubt.

Thank you. :-))

Answered by 18shreya2004mehta
20

Step-by-step explanation:

hope it helps you

plz follow me

Attachments:
Similar questions