Math, asked by ritikaverenkar, 10 months ago

secD=5/4. Evaluate

1-tanD/1+tanD

Answers

Answered by Sudhir1188
8

ANSWER

  • The value of the above expression is 1/7

GIVEN:

  • Sec D = 5/4

TO FIND:

 \frac{1 -  \tan \: d}{1 +  \tan \: d}

SOLUTION:

Formula

1 +  \tan {}^{2} d \:  =  \sec {}^{2} d

Putting Sec d = 5/4

 \implies \:  \tan {}^{2} d \:  =  \sec {}^{2} d - 1 \\  \implies \:  \tan {}^{2} d   =  (\frac{5}{4})  { }^{2}  - 1 \\ \implies \:  \tan {}^{2} d  \:  =  \frac{25}{16}  - 1 \\ \implies \:  \tan {}^{2} d  \:  =  \frac{9}{16}  \\ \implies \:  \tan  d  \:  =  \sqrt{ \frac{9}{16} }  \\ \implies \:  \tan  d  =  \frac{3}{4}

Putting tan d = 3/4

 =  \frac{1 -  \tan \: d}{1 +  \tan \: d}  \\  =  \frac{1 -  \frac{3}{4} }{1 +  \frac{3}{4} }  \\  =  \frac{ \frac{1}{4} }{ \frac{7}{4} }  \\  =  \frac{1}{4}  \times  \frac{4}{7}  \\  =  \frac{1}{7}

So , the value of the above expression is 1/7

SOME IMPORTANT FORMULA

Tan A = perpendicular/ base

Sin A = perpendicular/ hypotenuse

Cos A = Base / hypotenuse

Similar questions