second order derivative of e^2x multipled by tanx
Answers
Answered by
16
Answer:
2 e^2x . sec² x . tan x + 4 e^2x . sec² x + 4 e^2x . tan x
Step-by-step explanation:
Given :
f ( x ) = e^2x . tan x
We are asked to find second order derivative i.e. y₂ :
Using product rule :
d / d x ( u v ) = u ( v )' + v ( u )'
y₁ = e^2x ( tan x )' + tan x ( e^2x )
= > y₁ = e^2x . sec² x + 2 e^2x . tan x
Now :
= > y₂ = e^2x ( sec² x )' + sec² x ( e^2x )' + 2 [ e^2x ( tan x ) + tan x ( e^2x )' ]
= > y₂ = 2 e^2x . sec² x . tan x + 2 e^2x . sec² x + 2 [ e^2x . sec² x + 2 e^2x . tan x ]
= > y₂ = 2 e^2x . sec² x . tan x + 4 e^2x . sec² x + 4 e^2x . tan x
Hence we get required answer!
Similar questions