Math, asked by owaghmode10, 17 days ago

second order derivative of x^x​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given function is

\rm \: y =  {x}^{x}  \\

On taking log on both sides, we get

\rm \: logy =  log({x}^{x}) \\

can be rewritten as

\rm \: logy =  x \: logx \\

On differentiating both sides w. r. t. x, we get

\rm \: \dfrac{d}{dx}logy = \dfrac{d}{dx}( x \: logx) \\

\rm \: \dfrac{1}{y}\dfrac{dy}{dx} = x\dfrac{d}{dx}logx + logx\dfrac{d}{dx}x \\

\rm \: \dfrac{1}{y}\dfrac{dy}{dx} = x \times  \frac{1}{x} + logx \times 1  \\

\rm \: \dfrac{1}{y}\dfrac{dy}{dx} = 1 + logx  \\

\rm\implies \:\dfrac{dy}{dx} = y(1 + logx) \\

On differentiating both sides w. r. t. x, we get

\rm \: \dfrac{d}{dx}\bigg(\dfrac{dy}{dx}\bigg) = y\dfrac{d}{dx}(1 + logx) + (1 + logx)\dfrac{d}{dx}y \\

\rm \: \dfrac{ {d}^{2} y}{d {x}^{2} } = y \times  \dfrac{1}{x}  + (1 + logx)\dfrac{dy}{dx} \\

\rm \: \dfrac{ {d}^{2} y}{d {x}^{2} } = \dfrac{ {x}^{x} }{x}  + (1 + logx) \times y(1 + logx)\\

\rm \: \dfrac{ {d}^{2} y}{d {x}^{2} } = \dfrac{ {x}^{x} }{x}  + {x}^{x} {(1 + logx)}^{2} \\

\rm \: \dfrac{ {d}^{2} y}{d {x}^{2} } =  {x}^{x - 1}   + {x}^{x} {(1 + logx)}^{2} \\

\rm\implies \:\boxed{ \rm{ \:\rm \: \dfrac{ {d}^{2} y}{d {x}^{2} } =  {x}^{x - 1}   \bigg(1+ x {(1 + logx)}^{2} \bigg) \:  \: }}\\

\rule{190pt}{2pt}

Formulae Used :-

\boxed{ \rm{ \:\dfrac{d}{dx} {x}^{n} \:  =  \:  {nx}^{n - 1} \: }} \\

\boxed{ \rm{ \:\dfrac{d}{dx}logx \:  =  \:   \frac{1}{x}  \: }} \\

\boxed{ \rm{ \:\dfrac{d}{dx}k \:  =  \:   0  \: }} \\

\boxed{ \rm{ \:\dfrac{d}{dx}(u.v) \:  = u\dfrac{d}{dx}v \:  + \:v\dfrac{d}{dx}u \:  \:  }} \\

\rule{190pt}{2pt}

Additional information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {x}^{n}\\ \\ \sf  {nx}^{n - 1}  & \sf  {e}^{x} \end{array}} \\ \end{gathered}

Answered by βαbγGυrl
17

Given function is

 \begin{gathered}\rm \: y = {x}^{x} \\ \end{gathered}

On taking log on both sides, we get

\begin{gathered}\rm \: logy = log({x}^{x}) \\ \end{gathered}

can be rewritten as

\begin{gathered}\rm \: logy = x \: logx \\ \end{gathered}

On differentiating both sides w. r. t. x, we get

\begin{gathered}\rm \: \dfrac{d}{dx}logy = \dfrac{d}{dx}( x \: logx) \\ \end{gathered}

\begin{gathered}\rm \: \dfrac{1}{y}\dfrac{dy}{dx} = x\dfrac{d}{dx}logx + logx\dfrac{d}{dx}x \\ \end{gathered}

\begin{gathered}\rm \: \dfrac{1}{y}\dfrac{dy}{dx} = x \times \frac{1}{x} + logx \times 1 \\ \end{gathered}

\begin{gathered}\rm \: \dfrac{1}{y}\dfrac{dy}{dx} = 1 + logx \\ \end{gathered}

\begin{gathered}\rm\implies \:\dfrac{dy}{dx} = y(1 + logx) \\ \end{gathered}

On differentiating both sides w. r. t. x, we get

\begin{gathered}\rm \: \dfrac{d}{dx}\bigg(\dfrac{dy}{dx}\bigg) = y\dfrac{d}{dx}(1 + logx) + (1 + logx)\dfrac{d}{dx}y \\ \end{gathered}

\begin{gathered}\rm \: \dfrac{ {d}^{2} y}{d {x}^{2} } = y \times \dfrac{1}{x} + (1 + logx)\dfrac{dy}{dx} \\ \end{gathered}

\begin{gathered}\rm \: \dfrac{ {d}^{2} y}{d {x}^{2} } = \dfrac{ {x}^{x} }{x} + (1 + logx) \times y(1 + logx)\\ \end{gathered}

\begin{gathered}\rm \: \dfrac{ {d}^{2} y}{d {x}^{2} } = \dfrac{ {x}^{x} }{x} + {x}^{x} {(1 + logx)}^{2} \\ \end{gathered}

\begin{gathered}\rm \: \dfrac{ {d}^{2} y}{d {x}^{2} } = {x}^{x - 1} + {x}^{x} {(1 + logx)}^{2} \\ \end{gathered}

\begin{gathered}\rm\implies \:\boxed{ \rm{ \:\rm \: \dfrac{ {d}^{2} y}{d {x}^{2} } = {x}^{x - 1} \bigg(1+ x {(1 + logx)}^{2} \bigg) \: \: }}\\ \end{gathered}

\rule{190pt}{2pt}

Similar questions