Math, asked by abhyakumarnaik, 3 months ago

Secondary School Mathematics for
I in the blanks
A vessel is in the form of a hemispherical
bowl mounted by a hollow cylinder. If each
of the diameter and height of the vessel is 2R
then the inner surface area of the vessel is​

Answers

Answered by mathdude500
5

\begin{gathered}\Large{\bold{{\underline{Formula \: Used - }}}}  \end{gathered}

\boxed{\red{\bf \: CSA_{(Cylinder)} = 2 \: \pi \: r \: h}}

\boxed{\red{\bf \:CSA_{(hemisphere)} = 2 \: \pi \:  {r}^{2} }}

\large\underline{\sf{Solution-}}

Given that

  • A vessel is in the form of hemispherical bowl mounted by a hollow cylinder.

  • Diameter of cylinder = Diameter of hemisphere = 2R

  • Height of the vessel = 2R.

Since,

  • Radius of hemispherical bowl = R

We know,

  • Height of hemispherical bowl = Radius of hemispherical bowl

So,

  • Height of hemispherical bowl = R

Now,

  • Height of vessel = 2R

Thus,

  • Height of cylindrical part = 2R - R = R.

Now,

We have,

  • Height of cylindrical part, h = R

  • Radius of cylindrical part, r = R

  • Radius of hemispherical bowl, r = R

So,

\bf :\longmapsto\:SA_{(bowl)} = CSA_{(hemisphere)} + CSA_{(Cylinder)}

\rm :\longmapsto\:SA_{(bowl)} =2 \: \pi \:  {R}^{2}  + 2 \: \pi \: R \times R

\rm :\longmapsto\:SA_{(bowl)} =2 \: \pi \:  {R}^{2}  + 2 \: \pi \:  {R}^{2}

\rm :\longmapsto\:SA_{(bowl)} =4 \: \pi \:  {R}^{2}

Additional Information :-

\boxed{ \sf{ \: Volume_{(cuboid)} = lbh}}

\boxed{ \sf{ \: Volume_{(cube)} = {(edge)}^{3} }}

\boxed{ \sf{ \: Volume_{(cone)} = \dfrac{1}{3} \pi \: {r}^{2} h}}

\boxed{ \sf{ \: Volume_{(sphere)} = \dfrac{4}{3} \pi \: {r}^{3} }}

\boxed{ \sf{ \: Volume_{(hemisphere)} = \dfrac{2}{3} \pi \: {r}^{3} }}

\boxed{ \sf{ \: CSA{(cuboid)} = 2(l + b) \times h}}

\boxed{ \sf{ \: CSA{(cone)} = \pi \: rl}}

\boxed{ \sf{ \: CSA{(cube)} = 4 \times {(edge)}^{2} }}

\boxed{ \sf{ \: TSA{(cube)} = {6(edge)}^{2} }}

\boxed{ \sf{ \: TSA{(cuboid)} = 2(lb + bh + hl)}}

\boxed{ \sf{ \: TSA{(cone)} = \pi \: r(l + r)}}

\boxed{ \sf{ \: TSA{(cylinder)} = 2\pi \: r(h + r)}}

Attachments:
Similar questions