(sectheta-cosectheta) (1+tantheta+cottheta)=tantheta sectheta-cottheta cosectheta. prove that
Answers
Answered by
2
Answer:
(Secθ -Cosecθ)(1 + Tanθ + Cotθ) = TanθSecθ - CotθCosecθ
Step-by-step explanation:
(Secθ -Cosecθ)(1 + Tanθ + Cotθ) = Tanθ Secθ - CotθCosecθ
LHS
= (Secθ -Cosecθ)(1 + Tanθ + Cotθ)
= (1/Cosθ - 1/Sinθ)(1 + Sinθ/Cosθ + Cosθ/Sinθ)
= {(Sinθ - Cosθ)/(CosθSinθ) }{CosθSinθ + Sin²θ + Cos²θ)/CosθSinθ) }
= (1 + CosθSinθ)(Sinθ - Cosθ))/(Cos²θSin²θ)
= (Sinθ - Cosθ + Sin²θCosθ - Cos²θSinθ)/(Cos²θSin²θ)
= (Sinθ(1 - Cos²θ) -Cosθ(1 - Sin²θ)/(Cos²θSin²θ)
= (SinθSin²θ - CosθCos²θ)/(Cos²θSin²θ)
= Sinθ/Cos²θ - Cosθ/Sin²θ
= Tanθ/Cosθ - Cotθ/Sinθ
= TanθSecθ - CotθCosecθ
= RHS
QED
Proved
(Secθ -Cosecθ)(1 + Tanθ + Cotθ) = TanθSecθ - CotθCosecθ
Similar questions