Math, asked by Prajakta31, 1 year ago

Sectheta + tantheta = p , show that sectheta - tantheta = 1/p. Hence , find the values of costheta and sintheta

Answers

Answered by MaheswariS
0

\textbf{Given:}

\bf\,p=sec\,\theta+tan\,\theta........(1)

\frac{1}{p}=\frac{1}{sec\,\theta+tan\,\theta}{\times}\frac{sec\,\theta-tan\,\theta}{sec\,\theta-tan\,\theta}

\frac{1}{p}=\frac{sec\,\theta-tan\,\theta}{sec^2\theta-tan^2\theta}

\text{Using, $\bf\,sec^A-tan^2A=1$}

\frac{1}{p}=\frac{sec\,\theta-tan\,\theta}{1}

\bf\frac{1}{p}=sec\,\theta-tan\,\theta.................(2)

\text{Adding (1) and (2)}

p+\frac{1}{p}=sec\,\theta+tan\,\theta+sec\,\theta-tan\,\theta

\implies\frac{p^2+1}{p}=2\,sec\,\theta

\implies\bf\,sec\,\theta=\frac{p^2+1}{2p}...........(3)

\text{Taking recirocals, we get}

\implies\bf\,cos\,\theta=\frac{2p}{p^2+1}

\text{Subtracting (2) from (1)}

p-\frac{1}{p}=sec\,\theta+tan\,\theta-sec\,\theta+tan\,\theta

\implies\frac{p^2-1}{p}=2\,tan\,\theta

\implies\bf\,tan\,\theta=\frac{p^2-1}{2p}...........(4)

\text{Dividing (4) by (3)}

\displaystyle\frac{tan\,\theta}{sec\,\theta}=\frac{\frac{p^2-1}{2p}}{\frac{p^2+1}{2p}}

\displaystyle\frac{sin\,\theta/cos\,\theta}{1/cos\,\theta}=\frac{p^2-1}{p^2+1}

\implies\displaystyle\bf\,sin\,\theta=\frac{p^2-1}{p^2+1}

\therefore\boxed{\bf\,cos\,\theta=\frac{2p}{p^2+1}\;\&\;sin\,\theta=\frac{p^2-1}{p^2+1}}

Answered by sanjeevk28012
0

SecФ - tanФ  = \dfrac{1}{p}  is Proved  

The value of CosФ = \dfrac{2p}{p^{2}+1 }  ,  SinФ  = \dfrac{(p^{2}-1)  }{(p^{2}+1 ) }

Step-by-step explanation:

Given as :

The trigonometrical equation

SecФ + tanФ  = p              .........1

To prove  : SecФ - tanФ  = \dfrac{1}{p}                ........2

According to question

∵  SecФ + tanФ  = p

Or,  \dfrac{1}{Sec\Theta +tan\Theta }   = \dfrac{1}{p}

Or,  ( \dfrac{1}{Sec\Theta +tan\Theta } ) ( \dfrac{Sec\Theta -tan\Theta}{Sec\Theta -tan\Theta } ) = \dfrac{1}{p}

Or,   \dfrac{Sec\Theta -tan\Theta}{Sec^{2} \Theta -tan^{2} \Theta }  =  \dfrac{1}{p}

Or,  \dfrac{Sec\Theta -tan\Theta}{1}   =  \dfrac{1}{p}                       (∵ Sec²Ф  - tan²Ф  = 1 )

∴  SecФ - tanФ  = \dfrac{1}{p}   Proved

Again

Adding 1 and 2

 ( SecФ + tanФ ) + ( SecФ - tanФ ) = p + \dfrac{1}{p}

Or,  ( SecФ  + SecФ ) + ( tanФ - tanФ ) = p + \dfrac{1}{p}

Or,   2 SecФ   = \dfrac{p^{2}+ 1}{p}

Or,    SecФ   = \dfrac{p^{2}+ 1}{2p}

∵     SecФ  =  \dfrac{1}{Cos\Theta  }

So,    \dfrac{1}{Cos\Theta  } = \dfrac{p^{2}+ 1}{2p}

By cross multiplication

 CosФ = \dfrac{2p}{p^{2}+1 }

Again

∵      Sin²Ф  +  Cos²Ф  = 1

So,    Sin²Ф   = 1 -  Cos²Ф

Put the value of CosФ

i.e   Sin²Ф   = 1 -  ( \dfrac{2p}{p^{2}+1 }

Or,  Sin²Ф = \dfrac{(p^{2}+1) ^{2} -4p^{2} }{(p^{2}+1 )^{2} }

Or,  Sin²Ф = \dfrac{(p^{2}-1) ^{2}  }{(p^{2}+1 )^{2} }

∴    SinФ  = \dfrac{(p^{2}-1)  }{(p^{2}+1 ) }

Hence, SecФ - tanФ  = \dfrac{1}{p}  is Proved  

And The value of CosФ = \dfrac{2p}{p^{2}+1 }  ,  SinФ  = \dfrac{(p^{2}-1)  }{(p^{2}+1 ) }  Answer

 

Similar questions