Sectheta + tantheta = p , show that sectheta - tantheta = 1/p. Hence , find the values of costheta and sintheta
Answers
........(1)
.................(2)
...........(3)
...........(4)
SecФ - tanФ =
is Proved
The value of CosФ =
, SinФ = 
Step-by-step explanation:
Given as :
The trigonometrical equation
SecФ + tanФ = p .........1
To prove : SecФ - tanФ = ........2
According to question
∵ SecФ + tanФ = p
Or, =
Or, ( ) (
) =
Or, =
Or, =
(∵ Sec²Ф - tan²Ф = 1 )
∴ SecФ - tanФ = Proved
Again
Adding 1 and 2
( SecФ + tanФ ) + ( SecФ - tanФ ) = p +
Or, ( SecФ + SecФ ) + ( tanФ - tanФ ) = p +
Or, 2 SecФ =
Or, SecФ =
∵ SecФ =
So, =
By cross multiplication
CosФ =
Again
∵ Sin²Ф + Cos²Ф = 1
So, Sin²Ф = 1 - Cos²Ф
Put the value of CosФ
i.e Sin²Ф = 1 - ( )²
Or, Sin²Ф =
Or, Sin²Ф =
∴ SinФ =
Hence, SecФ - tanФ = is Proved
And The value of CosФ = , SinФ =
Answer