Math, asked by Prajakta31, 11 months ago

Sectheta + tantheta = p , show that sectheta - tantheta = 1/p. Hence , find the values of costheta and sintheta

Answers

Answered by mysticd
3

Answer:

 \red { cos\theta } \green { = \frac{2p}{p^{2}+1}}

 \red{sin\theta} \green {= \frac{p^{2} + 1 }{p^{2} - 1 }}

Step-by-step explanation:

 Given \: sec\theta + tan\theta = p \:---(1)

 We \: know \: the \: Trigonometric \: identity

 \boxed { \pink { sec^{2}\theta - tan^{2}\theta = 1 }}

 \implies (sec\theta+tan\theta)(sec\theta - tan\theta) = 1

 \implies p (sec\theta - tan\theta) = 1

\implies sec\theta - tan\theta = \frac{1}{p}\:--(2)

/* Add equation (1) and (2) , we get

 \implies 2sec\theta = p + \frac{1}{p}

\implies \frac{2}{cos\theta} = \frac{p^{2} + 1 }{p}

 \implies cos\theta = \frac{2p}{p^{2}+1} \:--(3)

/* Subtract equation (2) from (1) , we get

 \implies 2tan\theta = p - \frac{1}{p}

\implies \frac{2sin\theta}{cos\theta} = \frac{p^{2} - 1 }{p}

 \implies \frac{sin\theta}{cos\theta}= \frac{2p}{p^{2}-1} \:--(4)

/* Do (4) ÷ (3) , we get

 \implies sin\theta = \frac{p^{2} + 1 }{p^{2} -1 }\:--(4)

Therefore.,

 \red { cos\theta } \green { = \frac{2p}{p^{2}+1}}

 \red{sin\theta} \green {= \frac{p^{2} + 1 }{p^{2} - 1 }}

•••♪

Similar questions