Math, asked by sarkersudeshna008, 1 month ago

sectheta + tantheta/sectheta - tantheta=(1+sintheta/costheta)²​

Answers

Answered by ripinpeace
13

Step-by-step explanation:

Given -

  •  \bf \rm{ \dfrac{sec \theta \:  + tan \theta}{sec \theta \:   -  tan \theta} }

To prove -

  •   \bf\rm{ {\huge(} \dfrac{1 + sin \theta}{cos \theta} {\huge)}^{2}  }

Solution -

L.H.S

 \longmapsto \bf \rm{ \dfrac{sec \theta \:  + tan \theta}{sec \theta \:   -  tan \theta} }

 \longmapsto \bf \rm{ \dfrac{ \dfrac{1}{cos \theta}  \:  +  \dfrac{sin \theta}{cos \theta} }{ \dfrac{1}{cos \theta}  \:   -   \dfrac{sin \theta}{cos \theta} } }

 \bf \longmapsto \rm{ \dfrac{ \dfrac{1 + sin \theta}{cos \theta} }{ \dfrac{1 - sin \theta}{cos \theta} } }

 \longmapsto \bf \rm{ \dfrac{1 + sin \theta}{ \cancel{cos \theta}} \times  \dfrac{ \cancel{cos \theta}}{ 1 - sin \theta}  }

\longmapsto \bf \rm{ \dfrac{1 + sin \theta}{1 - sin  \theta}}

\longmapsto \bf \rm{ \dfrac{1 + sin \theta}{1 - sin  \theta} \times  \dfrac{1 + sin \theta}{1 + sin \theta} }

\longmapsto \bf \rm{ \dfrac{(1 + sin \theta)^{2} }{ {1}^{2}  - sin^{2} \theta}}

\longmapsto \bf \rm{ \dfrac{(1 + sin \theta)^{2} }{ {1} - sin^{2} \theta}}

∵ sin²∅ + cos ²∅ = 1

=> cos²∅ = 1 - sin²∅

\longmapsto \bf \rm{ \dfrac{(1 + sin \theta)^{2} }{  {cos}^{2}  \theta}}

\longmapsto \bf \rm{ \dfrac{(1 + sin \theta)^{2} }{ ( {cos} \theta) ^{2} }}

  \longmapsto \bf \green{\rm{ { {{\huge(} \dfrac{1 + sin \theta}{cos \theta} {\huge)}^{2}  }}}= R.H.S}

More to know -

  •  \rm{sin \theta =  \dfrac{1}{cosec \theta} }

  •  \rm{cos \theta =  \dfrac{1}{sec \theta} }

  •  \rm{tan \theta =  \dfrac{1}{cot \theta} }

  •  \rm{cosec \theta =  \dfrac{1}{sin \theta} }

  •  \rm{sec \theta =  \dfrac{1 }{cos \theta} }

  •  \rm{cot \theta =  \dfrac{1 }{tan \theta} }
Answered by UJJWALDEV
0

Step-by-step explanation:

Step-by-step explanation:

★Given -

\bf \rm{ \dfrac{sec \theta \: + tan \theta}{sec \theta \: - tan \theta} }

secθ−tanθ

secθ+tanθ

★To prove -

\bf\rm{ {\huge(} \dfrac{1 + sin \theta}{cos \theta} {\huge)}^{2} }(

cosθ

1+sinθ

)

2

★Solution -

L.H.S

\longmapsto \bf \rm{ \dfrac{sec \theta \: + tan \theta}{sec \theta \: - tan \theta} }⟼

secθ−tanθ

secθ+tanθ

\longmapsto \bf \rm{ \dfrac{ \dfrac{1}{cos \theta} \: + \dfrac{sin \theta}{cos \theta} }{ \dfrac{1}{cos \theta} \: - \dfrac{sin \theta}{cos \theta} } }⟼

cosθ

1

cosθ

sinθ

cosθ

1

+

cosθ

sinθ

\bf \longmapsto \rm{ \dfrac{ \dfrac{1 + sin \theta}{cos \theta} }{ \dfrac{1 - sin \theta}{cos \theta} } }⟼

cosθ

1−sinθ

cosθ

1+sinθ

\longmapsto \bf \rm{ \dfrac{1 + sin \theta}{ \cancel{cos \theta}} \times \dfrac{ \cancel{cos \theta}}{ 1 - sin \theta} }⟼

cosθ

1+sinθ

×

1−sinθ

cosθ

\longmapsto \bf \rm{ \dfrac{1 + sin \theta}{1 - sin \theta}}⟼

1−sinθ

1+sinθ

\longmapsto \bf \rm{ \dfrac{1 + sin \theta}{1 - sin \theta} \times \dfrac{1 + sin \theta}{1 + sin \theta} }⟼

1−sinθ

1+sinθ

×

1+sinθ

1+sinθ

\longmapsto \bf \rm{ \dfrac{(1 + sin \theta)^{2} }{ {1}^{2} - sin^{2} \theta}}⟼

1

2

−sin

2

θ

(1+sinθ)

2

\longmapsto \bf \rm{ \dfrac{(1 + sin \theta)^{2} }{ {1} - sin^{2} \theta}}⟼

1−sin

2

θ

(1+sinθ)

2

∵ sin²∅ + cos ²∅ = 1

=> cos²∅ = 1 - sin²∅

\longmapsto \bf \rm{ \dfrac{(1 + sin \theta)^{2} }{ {cos}^{2} \theta}}⟼

cos

2

θ

(1+sinθ)

2

\longmapsto \bf \rm{ \dfrac{(1 + sin \theta)^{2} }{ ( {cos} \theta) ^{2} }}⟼

(cosθ)

2

(1+sinθ)

2

\longmapsto \bf \green{\rm{ { {{\huge(} \dfrac{1 + sin \theta}{cos \theta} {\huge)}^{2} }}}= R.H.S}⟼(

cosθ

1+sinθ

)

2

=R.H.S

★More to know -

\rm{sin \theta = \dfrac{1}{cosec \theta} }sinθ=

cosecθ

1

\rm{cos \theta = \dfrac{1}{sec \theta} }cosθ=

secθ

1

\rm{tan \theta = \dfrac{1}{cot \theta} }tanθ=

cotθ

1

\rm{cosec \theta = \dfrac{1}{sin \theta} }cosecθ=

sinθ

1

\rm{sec \theta = \dfrac{1 }{cos \theta} }secθ=

cosθ

1

\rm{cot \theta = \dfrac{1 }{tan \theta} }cotθ=

tanθ

1

Similar questions