Math, asked by disha7016, 1 year ago

(sectheta-tantheta)square=1-sintheta/1+sintheta

Answers

Answered by DhanyaDA
5

Note

let ¢=x

To prove

\sf (secx-tanx)^2=\dfrac{1-sinx}{1+sinx}

Explanation:

Consider LHS

 =  >  {(secx - tanx)}^{2}

Expanding using the formula

\underline {\sf (a-b)^2=a^2+b^2-2ab}

 =  >  {sec}^{2} x +  {tan}^{2} x - 2secxtanx

we know that

\sf sec^2x-tan^2x=1

\underline{\sf sec^x=1+tan^2x}

applying this formula

 =  > 1 +  {tan}^{2} x +  {tan}^{2} x - 2secxtnx

 =  > 1 + 2 {tan}^{2} x - 2secxtanx

 \underline{ \sf \: tanx =  \dfrac{sinx}{cosx} }

 \underline{ \sf \: secx =  \dfrac{1}{cosx} }

Using these

 =  > 1  + 2 \dfrac{ {sin}^{2}x }{ {cos}^{2} x}  - 2  \times  \dfrac{1}{cosx}  \times  \dfrac{sinx}{cosx}

 =  > 1 +  2\dfrac{ {sin}^{2}x }{ {cos}^{2}x }  - 2 \dfrac{sinx}{ {cos}^{2}x }

Taking LCM

 =  >  \dfrac{ {cos}^{2}x +  {sin}^{2} x +  {sin}^{2} x - 2sinx }{ {cos}^{2} x}

 \underline{ \sf \:  {sin}^{2} x +  {cos}^{2} x = 1}

 =  >  \dfrac{ {sin}^{2} x - 2sinx + 1}{1 -  {sin}^{2} x}

Numerator is of the form (a-b)^2

 =  >  \dfrac{ {(1 - sinx)}^{2} }{ {1}^{2}  -  {sin}^{2} x}

using

 \underline{ \sf \:  {a}^{2}  -  {b}^{2}  = (a + b)(a - b)}

 =  >  \dfrac{(1 - sinx)(1  -  sinx)}{(1 - sinx)(1 + sinx)}

 =  >  \dfrac{1 - sinx}{1 + sinx}

Hence proved...

Similar questions