Math, asked by aakashdedha77, 7 months ago

Section B
11. Represent 23.3333.... in
0f
р/q
form where p and q are integers and q ≠ 0​

Answers

Answered by angelina10
0

Answer:

70/3

Step-by-step explanation:

let x=23.33333...-----equation 1

as periodicity=1 multiply equation 1 with 10^1

10x=233.333...--------equation 2

subtract equation 2-equation 1

10x=233.3333...

(-) x= 23.3333...

------------------------

9x=210

-------------------------

x=210/9

x= 70/3 (a rational number)

Answered by Anonymous
6

Answer:

 \huge{ \purple{ \bold{ \mathcal{ \underline{Solution:-}}}}}

 { \pink{ \bold{ \underline{ \underline{Given:-}}}}}

Represent 23.3333.... in 0f р/q form where p and q are integers and q 0[/tex]

 </p><p>{ \blue{ \bold{ \underline{ \underline{Find:-}}}}}

23.333 in the form of p/q

 { \pink{ \bold{ \underline{ \underline{Solve:-}}}}}

<strong>Let x = 23.3333......... (1)</strong>

  <strong><em>10x = 233.3333........(2)</em></strong>

<strong>Subtract (1) from (2)</strong>

<strong><em>10x - x = 233.3333........ - 23.3333.......</em></strong><strong><em>.</em></strong>

  <strong>9x    = 210</strong>

<strong><em>x =  \frac{210}{9}</em></strong>

<strong>x =  \frac{70}{3}</strong>

\red{\mid{\fbox{\tt{Hope it's helpful uh ♡♡ }}\mid}}

Similar questions