Math, asked by sornagomathipehlrk, 11 months ago

(secx-cosx)(cotx+tanx)=tanx*secx

Answers

Answered by Anonymous
8

Question ;

( \sec(x)  -  \cos(x) )( \cot(x)  +  \tan( x ) ) =  \tan(x)  \times  \sec(x)

\huge{\blue{\boxed{\boxed{\boxed{\pink{\underline{\underline{\mathfrak{\red{♡ĂnSwer♡}}}}}}}}}}

LH S :

( \sec(x)  -  \cos(x) )( \cot(x)  +  \tan(x) )

 = ( \frac{1}{ \cos(x) }  -  \cos(x) )( \frac{ \cos(x) }{ \sin(x) }  +  \frac{ \sin(x) }{ \cos(x) } )

 = ( \frac{1 -  \cos {}^{2} (x) }{ \cos(x) } )( \frac{ \sin {}^{2} (x) +  \cos {}^{2} (x)  }{ \sin(x)  \times  \cos(x) } )

 =  (\frac{ \sin {}^{2} ( x ) }{ \cos(x) }) ( \frac{1}{ \cos(x) \times  \sin(x)  } )

 =  \frac{ \sin(x) }{ \cos(x) }  \times  \frac{1}{ \cos(x) }

 =  \tan(x)  \times  \sec(x)

= RHS

Answered by Magicianofmaths25
2

Step-by-step explanation:

This is the solution for the given problem and mark it as brainliest

Attachments:
Similar questions