Math, asked by sourabhshukla632, 1 year ago

(secx+tanx) (1-sinx)=?​

Answers

Answered by ShuchiRecites
32

To Solve

→ (secx + tanx)(1 - sinx)

Solution

→ (secx + tanx)(1 - sinx)

→ (1/cosx + sinx/cosx)(1 - sinx)

→ (1 + sinx)/cosx × (1 - sinx)

→ (1 - sin²x)/cosx

→ cos²x/cosx

cosx

Identities used

  • tan∅ = sin∅/cos∅
  • sec∅ = 1/cos∅
  • (a + b)(a - b) = a² - b²
  • 1 - sin²∅ = cos²∅

Answer: cosx


BloomingBud: very nice sis :)
ShuchiRecites: Thanks sisu! :-D
Answered by Anonymous
157

\huge\boxed{Answer:-}

\boxed{Answer=cosx}

Explanation:

Let us find the answer for (secx+tanx) (1-sinx)=?

=>(secx + tanx)(1 - sinx)

=>( \frac{1}{cosx}  + \frac{sinx}{cosx}  )(1 - sinx)

=> \frac{(1 + sinx)}{cosx}  × (1 - sinx)

=>\frac{(1 - sin2x)}{cosx}

=>(cos²x)/(cosx°cosx)

identies we used to get our answer:

  • tan° = sin°/cos°
  • sec° = 1/cos°
  • (a + b)(a - b) = a² - b²
  • 1 - sin²° = cos²°

Proved!!

Therefore (secx+tanx) (1-sinx)=(cosx)

Similar questions