Math, asked by VedantPopli, 11 months ago

(secx - tanx)² = 1 - sinx / 1+sinx

Answers

Answered by Anonymous
5

Answer \:  \\  \\ Given \:  \: Question \: Is \:  \\  \\  ( \sec(x)  -  \tan(x) ) {}^{2}  =  \frac{1 -  \sin(x) }{1 +  \sin(x) }  \\  \\ LHS \:  \:  \\  \\ ( \sec(x)  -  \tan(x) ) {}^{2}  \\  \\   ( \frac{1}{ \cos(x) }  -  \frac{ \sin(x) }{ \cos(x) } ) {}^{2}  \\  \\  \frac{(1 -  \sin(x) ) {}^{2} }{ \cos {}^{2} (x) }  \\  \\  \frac{(1 -  \sin(x) ) \times (1 -  \sin(x) )}{1 -  \sin {}^{2} (x) }  \\  \\  \frac{(1 -  \sin(x)) \times (1 -  \sin(x) ) }{(1 -  \sin(x) ) \times (1  +  \sin(x) )}   \\  \\  \frac{(1 -  \sin(x)) }{(1 -  \sin(x) )}  \times   \frac{(1 -  \sin(x) )}{(1 +  \sin(x)) }  \\  \\  \frac{(1 -  \sin(x)) }{(1 +  \sin(x) )}  \:  \:  \:  \:  \: hence \: proved \\  \\ Note \:  \:  \:  \\  \\  \tan(x)  =  \frac{ \sin(x) }{ \cos(x) }  \\  \\  \sec(x)  =  \frac{1}{ \cos(x) }  \\  \\ 1 -  \sin {}^{2} ( x)  = (1 -  \sin(x) ) \times (1  +  \sin(x) )

Similar questions