secx-tanx=x find sinx cosx tanx
Answers
Answer:
cos x = 2x/x^2+1
sin x = x^2 -1/ x^2+1
tan x = x^2-1 /2x
Step-by-step explanation:
- sec x + tan x = x (eq no 1)
we know sec x= 1/cos x,
tan x = sinx / cos x
substitute in equation no 1,
1/cos x + sinx /cosx = x
- 1+sinx / cosx = x (eq no 2)
we know sec^2 x - tan^2 x = 1 (or)
(sec x + tan x) ( sec x - tan x) = 1
substituting equation no 1,
x ( sec x - tan x) = 1
- sec x - tan x = 1/x ( eq no 3)
Solving this using formula,
1/cos x - sin x/ cos x = 1/x
- 1-sin x / cos x = 1/x (eq no 4)
now Adding eq 2 & 4,
(1+ sin x/ cos x) / (1- sin x/ cos x) = x + 1/x
2/ cos x = x^2 + 1/ x
- cos x = 2x / x^2 +1
subtracting eq 1 & 3,
(sec x + tan x) - ( sec x - tan x) = x - 1/x
sec x + tan x - sec x + tan x = x^2 -1 / x
2 tan x = x^2 -1/ x
- tan x = x^2 -1/ 2x
Finally we know sin x = tan x . cos x,
substitute tan & cos x,
sin x = tan x. cos x
= (x^2 -1/ 2x) . ( 2x/ x^2 +1)
- sin x = x^2 -1 / x^2 + 1
HOPE IT'S HELPFUL