Math, asked by silasraja5, 18 days ago

See addition of the first n elements of the series 6 + 66 + 666 +​

Answers

Answered by BrainlyFlash
1

Let S be the sum of series 6+66+666+...to n terms.

Then ,

 \sf \: S = 6 + 66 + 666 + ...to  \:  n \: terms

 \sf  S = 6  \big\{1 + 11 + 111 + ...to \: n \: terms   \big\}

 \sf \: S =  \dfrac{6}{9}  \times 9 \big\{1 + 11 + 111 + ...to \: n \: terms \big\}

 \sf \: S =  \dfrac{6}{9} \big\{9 + 99 + 999 + ...to \: n \: terms \big\}

 \sf \: S =  \dfrac{6}{9}   \bigg\{ \big(10 - 1 \big) +  \big( {10}^{2}  - 1 \big) +  \big( {10}^{3}  - 1 \big) + ... \big( {10}^{n}  - 1 \big) \bigg\}

 \sf  \: S = \dfrac{6}{9} \bigg \{ \big(10 +  {10}^{2} +  {10}^{3}   + ... +  {10}^{n}  \big) -  \big(1 + 1 + 1 + ...n \: terms \big) \bigg \}

 \sf \: S \:  =  \dfrac{6}{9}  \bigg \{10 \times   \dfrac{ \big( {10}^{n - 1} \big)}{10 - 1}  - n \bigg \}

 \sf \: S =  \dfrac{6}{9}  \bigg \{ \dfrac{10 \times \big( {10}^{n}  - 1 \big) - 9n }{9}  \bigg \}

 \sf \: S \:  =  \dfrac{6}{81}  \big\{ {10}^{n + 1}  - 10 - 9n \big\}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions